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Abstract

We consider the general form of the stochastic approximation a lgorithm

X~~1 = X~ + ~~~~~~~~~ where h is not necessarily additive in Such algo-

rithms occur frequently in applications to adaptive control and identification

problems , whE re { } is usually obtained from measurements of the input and

output, and is a lmost always complicated enough that the more classical assun~-

tions on the noise fail to hold. Let a~ A/ (n+l)a, Ocacl, and let X1~ -.. e w.p. 1.
Define U = (n+l)

~
’2(Xn

_O). Then, loosely speaking, it is shown that the sequence

• of suitable continuous parameter interpolations of the sequence of “tails” of

converges weakly to a Gaussian diffusion. From this we can get the

asymptotic variance of U~ as well as other information. The assumptions on

{ç~
} and h(., ) are quite reasonable from the point of view of applications.
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Introduction

4 .
Rates of convergence for stochastic approximation problems were given in

t 1, 2, 3, 4], the latter two references getting better results via weak convex’-

gence me thods , for both cons trained and unconstrained systems .

A fore of stochastic approximation algorithm which is of increasing impor-

tance is the fo l lowing. Let {a~ } denote a sequence of positive real numbers with

~ri a~ = m , h a suitable function and (~~ ) a sequence of random variables . Define

the sequence of Rr_valued random variables (X 5
} by

(1.1) X = X + a h ( X  ,~~ 
).n+l n n n n

In E l  J — E~ I, the function h was essentially additive in as is usually the

• case in classica l Kiefer-Wolfowitz and Robbins—Munro type stochastic approximation *

algori thms. Of course , if { ~~} is a sequence of independent random variables ,

then h (X n i~~~
) can be written in the fore E(h(X ,E~~)~ X ]  + 4 , ,  where = h(Xn s~ n

) —

E ( h ( X ,E ) I X ] is a member of an orthogonal sequence, and we are back to the

classical case . In the applications that we have in mind the 
~~n 1 can be rather

genera l processes.

The more genera l fore (1.1) arises in applications to problems in the recur-

sive identification of the parameters of linear systems , or in the so-called self—

tuning regulators or in other applications of adaptive systems (5 , 6] . Such applica-

tions are the motivation for this work . Often X is an estimate of the vector system

parameter and is a random vector which is related to the measured inputs and

outputs of the system. The rate of convergence problem for such situations has not

been dealt with , and somewhat different methods are required.

In . this pape r we develop rate of convergence results for (1.1) under quite

• reasonab le condi t ons. Owing to the way in which  ( I . ] )  arises in appl i cations ,

the {~~ ) is rarely .1 sequence of independent random vari ables , and

E ( h ( X n ,ci ) I ~~o,...,E n i
) is rare ly a function on ly of Xn i • Thus classical

~~~~~~
•

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _  
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1 2.

rate of convergence methods (as in [1 ), [2 ] )  cannot be used directly. We use

some of the ideas in (3], (4), but adapted to our case , and under weaker

conditions on the noise sequences.

The problem is f ormulated and some assumptions given in Section 2. Weak

convergence of a sequence of normalized (X~} is given in Section 3, and the general

rate result appears in Section 4.

2. Terminolo~ v and Problem Formulation

For 
~ ~ 

(0,1] and A a matrix, set a~ = A/(n÷l)U. Since we are concerned

with rates of convergence, we assume convergence (see (i4 ) for a detailed discus-

sion of the convergence both w.p. 1 and weakly). In particular, we suppose that

there is a 0 ERr’ such that Xn ÷ 0 w.p. 1. Set U = (n+l)~
”2(X~

_0)
~ ~t5 =

( n+l)~~~, h~ = h(0~F~ ) and F~ (fl+2/fl+l)a~
’2h~. Let h(•,~) be continuously dif-

• ferentiable for each E , with the gradient h
~
(.,.) being Borel—measurable.

There is a function O(’) such that with Hn defined by (2.1), (2.2) ~ rUs .

(See [ 3], eqn. (5.2) for a related calculation for the case where h is additive

in c.)

(2.1) H = Ah (e ,~ ) + 
___ a I + O(__ !_) I

n X fl 2(n+l)l a  n+l

+ A(~~~ )~~
2 
J[hx

(0+ t(X
n
_0)

~~n
)_h

x
(0
~~n

)]d t

+ A[ ( )U/’2 — 1] h ( O ,F )

- --S- ~~~_*1•___ 
~~~~~~~~~~~~~~~~~
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3.

(2.2)~ U
÷~ 

= ( I  + ~t H ) U  + A1~~~ h

For future use define 6W = V’~~~ h , = p1~~~~~~~ hn n u n n n
Lemmas 1 and 2 contain some preparatory results concerning the iteration

• (2.2), and tightness of (U
n
) (i.e., SUP P(~ U 1  > N )  -

~~ 0 as N “) is proved in

Theorem 1.

Next, following the general approach of [ 3], a sequence of processes

{U U(.)} is defined as tollows . Let t ~~~~~~~~~ 

~~~ t
0 = 0 and define m (t)

rnax{k: t
k
<t}. Set U~~O = 0N and U

N(t) UN+n in [tN+fl,tN+flf l~ 
Thus UN(.) is

a process whose paths are piecewise constant and in D”[O ,~), the space of R
”—valued

functions which are right continuous on (0,°’) and have left-hand limits on (o ,°’).

Since it will be important for us to go back and forth between the {u~} and

sequences, the functions m(.) and t~ wil l be used quite frequently, occas ionally

(and regrettably) causing some complicated notation.

Owing to the scale factor a = ~~~~ the interpolation U
N() is quite natural

for this problem. In Theorem 2 it will be shown that {U ~’( • ) }  is tight in Dr[O ,O~)

and converges weak ly to the stationary linear Gaussian diffusion (4.1). As is

common in applications of weak convergence theory, if a sequence of measures

{u5} is tight and converges weakly to u (all on R
” or D

!
~[O ,o o) ) ,  and u and u are

induced by processes X5( )  and X ( ) , resp . (with paths in Rr or Dr[O,~)), then we

abuse terminology and say that is tight and converges weakly to X. This weak

convergence gives us the basic rate of convergence result. Some advantages of our

approach are discussed in [ 3]. It yields the convergence in distribution (to a

normally distributed random variab le , the stationary distribution of (‘4.1)) of

• ~From (2.1) we can guess that if ~ = 1 (resp. o < 1) the “effective” component of

H is (Ah ( 0,~~ ) + 1/2) (Ah (0,~~), resp.).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~
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4.

but also more, since it gives information on the correlation structure of

the process (U N+ , n>O} for large N.

Remark on weak convergence. Billingsley [7 ] is the most comprehensive

•
reference. The space D[O,T] is discussed in [7  1, Sections 14 and 15. A brief

summary of relevant facts is given in [L~ ], Chapter 2. D
rs
[O ,.O) is endowed with

• the usual (17] , Section 1~4) Skorokhod topology, with which it is a complete separ-

able metric space. Convergence in 0r~[0,00) occurs if, for some sequence T + 
~~~ , it

occurs (for the truncated functions ) in each Dr’(o ,T1.

• Assumptions. (Al) - (A5) will be used throughout the paper.

(A l) Xn 0 w.p. 1

(A 2) h (~~,.) is a Borel function, continuously differentiable in its first

argument for each value of the second, and the gradient h
~
(, ) is Borel.

• A lso Eh (~~,~~ ) 0 and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0

as n ~~~. (Certain ly true if the are bounded and h
~

( , .) is continuous.)

(A3a) There is a matrix H such that for some (hence each) T > 0 and each e > 0

m(jT+t)—1
u r n  P{sup max At1

(h
~
(0,F

~
.)_H)( > c} = 0.

n-.~ j>n 0<t<T i m (jT)

(A3b) There is a constant T such that for each ~ > 0 and T > 0 ,

m(jT+t)—1
J im P{sup max At 1

( Ih~
(0 ,

~1)I — i)I  .~~. 
c} = 0 ,

i>n O<t<T i m (jT)

where N = (x’x)1”2 and I M I  = sup
1~~1 1 lM xI if M is a matrix.

• .• - , — • ~ . • •-.~~~—--—- — 
~~~~~~~~~~~~~~~

—- .-.- —---•-.- •. . • — —-—- . . - • . .  . • - .  -U- - ,  ,~~~-~~~~~~~~
ç-- -- -.~~~~ 

— ~~~~~~~~~~~~~~~~~~~~ 
-~~_~~ _g•_ ~~~~-~~-•.— — —i- - — —•—~~ - —i--- — — •— 
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5.

Remark on (A3a and b). Conditions of type (A3a , A3b ) were used extensively

in the monogra ph [ 4], and as shown in that reference are rather weak and quite

• natural for the problem. See, for examp le, the several cases discussed in [ ],

• 
Chapter 2.2. The conditions are commonly satisfied by the noise processes which

appear in the usual applications to the identification problem. We mention only

the following three cases for (A3a): (a) ~a
2 

< and {h
x

(O
~~n

)_Eh
x
(0
~~n

)} ortho-

gonal; (b) h
x
(0
~~n

)_Eh
x
(O
~~n
) = 

i~o 
b~iP~~~. for a broad class of {b1

}, {q.} where

{~~} are independent and identically distributed ; (c) 
~~~ 

stationary, (A 5) holds

• 2 . 2
for h

~ 
replacing h and ~a.(log2

i) < holds.

In order to illustrate our terminology and get some additional insight into

• (A 3), let us define a process ~(t) as follows: ~(o) = 0, and ~(t) =

~~ ~~~~~~~~~~~~~~ 
on [t ,t 1

). Then

• m (t)-l
• 

~(t) = 
~ ~t.(h (0,~ .)—H).

1=0

Condition (A3a ) implies that the variation of the “increasing compressed interpola-

tion” ~(-t ) over an arbitrary interval (ct ,cz+T) goes to zero w.p. 1 as a -‘

(A4) If a = 1, set ii AH + 1/2, and if a < 1, set AN. The eigenvalues

of H have negative real parts.

(A S) Def ine Rmk by R~~ = Eh’(8,ç,~)h( 0,~~). Then SUPm~~~O
IRn,I(I < °‘~ Also

supmEIh x
(0,

~~
)I
2 

< 
~~~~~

3. Tightness of (U5)

In order to simplif y the presentation of the chain of calculations, we

present them partially in a sequence of lemmas . Among other things , we wish to

show that the H and h in (2.2) can be replaced by II and ~~ resp . Apart from

differences due to the grelter generality of the noise here, the main differences

- —U-  -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~
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6.

between the treatment of (1.1) and the past work where h was assumed additive in

~ are due to the randomness of the H .  To deal with them, we exploit the

“averaging” or “smoothing” conditions (A3) and the stability condition (A4).

• We use K to denote a constant whose value may change from usage to usage.

Henceforth {C
k

} denotes a sequence of positive real numbers such that

< ~~. Let {M
k

} be a sequence of integers tending to ~ as k + ~~~ , and define

the measurable set~. (in the sample space) Ak, Bk and C
k by (note that > t

M
- . and m( jck) > are equivalent statements)

m (j c
k
+t)_l

A
k = ~ sup max 

~
t. (Ah

~
(0,

~1
)_AH)I 

~JCk
>t
M 

O<t<E
k 

i m(jek
) ~

m(jck
+t)_l

B
k 

= ~ sup max 
~
t1(Ih ~

(0,
~ 1

)t_T )I c~ },

~ 
c~~t~ k 

I =m (IL k
)

Ck 
= sup 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ c~~}.
• 

~— k  0 
-

•~•1 I
Set Dk = 

i~k
’ 
U B.U C.). Choose M

k 
such that P {A

k
} + P{B

k
) + P(C

k
} 

.
~~
. 

~~ 

and

tat .  < c~~, i > M
~K
. Such a choice is possible by (A3). Then P(Dk

} 
~k 

+ 0 as

k ~~ . Consequently for ~E Dk and 1 > Mk ,  (A 3) implies that the individual terms

in the sums in (A3) satisfy 
—

IAt 1
(Ah

~
(0 ,

~ 1
)_AH )I < 4 IA I L ,~,

I~~
t
1

( Ih
~~

(0 ,
~~1

) I — t ) I  < ~4c~ .

• From the definitions of Mk and we immediate ly get the following lemma.

Lemma 1. Under (Al) - (A3), there is a constant K such that for each k and w~~ Dk

and

~~~~~~~~~~~~~~~~



I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~ 

- 

~~~~~~~~~~~~~~~~

H 
- ,

7.

~~~~~~ < K E
kF - • i m (j c

k
)

m(j
~k

+t)_1

I 
. ~t

. (H .—ii)I < Kc~ , t 
~~~ 

C~~.
1 m(Jck)

• We now proceed to put the iteration (2.2) into a more convenient form.

N N N N
Define C

n by CN+l = I and for’ n < N , C
n 

= ft (I+~t. 9~ ) (I+
~
t
~
H
~

) ... (I +~t5H5).
:j=~

Lemma 2. Assume (Al) to (A3). Then on a set whose probability is arbitrari4y

close to 1

m(t
N
+t+s) 

—
(3.1) C

(t+~~ 
-

~~ exp Ht

as N ~~~~, uniformly on bounded t-intervals. Also, there is a real K such that

for each k and each N > Mk and w 
~ 

Dk and t < Ck

m(tN+t+s)
• F, (3.2) Cm(t +~~ 

= [I + H t + o],

where al < K e~ .

Proof. (3.1) follows directly from (3.2) and we only prove (3.2) for t < and

S = 0. For H > m we have

H M M M
C
~ 

= 11(1 + At.H.) = I + ~ At.H1 + 
•
~~~ 

. ~~ ~~~ tat. H. H. +
In i=m i 2=m 11

>1
2 1 2 1 2

+ t~t ...At H ... HM m M  m

M H N
( 3 . 3 )  — (I÷~~ At.H.)I ~~ . .~~~ ~ At~ At. 1H 1 II 11~ ~+ ... + AtM...At I HM I...I H I

i m  1 =m ‘l>’2 1 2 1 2

~



- ~~~~~~~ ~~~~~~~~~~~~
-

~
- •

~~~
-

~~
-- -

. 
-- --

~~~~~~~
-—- :— --- --- —- — 

____ _______

I

• 8 .

p H
• 

~~~~~~~~~~~~~~~ 
÷ .“

Now using Lemma 1 to upper bound the right side of (3.3) and to estimate

m
At

i~
h
i y

ields (3.2). Q.E.D.

We require one more preparatory setup. For any H, m and vector z0 
define

M
z = fl(I+At.H.)z = CMZ

• 1 L I . 0 m Oin

where tM÷l tm 
< c

~ 
and m > M

k
. Let P denote the unique (under (A4)) symmetric positi~

definite matrix such that J-I’P ÷ PIT = —I ; x ’Px is a Liapunov function for the dif—

ferential equation k = Hx, which is asymptotically stable under (AL#). Define

• • Ix I~ (x ’P x) 1”
~ , and let u denote a positive constant such that uIx I~ < 1x 1

2. •

By Lemma 2, if m > M
k 

and (t
M+1 tIn

) < and w 
~ 

Dk ,  we have

z
1 

= [I + (tM+l
_t

m
)IT + O] Z

O

- where id < Kc~ and (under (A4) and using H’P+PH = — I )

zlPz1 z~Pz0 
- (t

M+l
_t

m
) 1z01

2

+ z~[Po+cj’P+a ’P~ + (tM+l
_t

In
)(ff’Po+a ’Pff) + (tM+l

_t
m)
2fl•’Pff]Z

O

from which we get (for some real K)

( 3.4) lz 1t~ < (1 — U(tM÷l
_t

m
) +

< exp{_u( t M+l
_t

m ) + Kc~ ]Iz0I~

Thus IC~I~ < exp [_u( t M÷l
_ t

ffl
) + Kc~]. We are now ready for the first theorem.

J•ii_ •i jJ_•_ 
- 

~~~~~~~~~~~~~~ ~~~ :
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9.

Theorem 1. Under (Al) to (A5), (ti~} is tight on R~.

Proof. By iterating (2.2) we get

(3.5) UN 1  = C
~~~

UN + 

~~ 

C~~~~1 
A6~~÷~

.

Define

W~~=~~i. ÷ ...÷6W ,
in

= ow . ÷ ... + O W .
j  In

Then a summation by parts of (3.5) yields

(3.6) UN÷ ÷l = C
~~~

UN + C~:~
A~~

÷n 
- ~~C~~~÷1 N÷~A +

tN÷~
.

The estimate (3.4) will now be used heavily. By dividing the interval

into subintervals oF length ck 
(except for the last subinterval, which

is < Ek) and using (3.4), we get that there is a sequence of real numbers 
-

~ 0

such that if u 
~ 

Dk and N 
> M

~K , then

(3.7) IU N ÷ ÷ 1I P < (1÷6
k
) exp[— ~

(t
N+n÷l

_t
N)j I’~ I~

+ (1+6k
) exp[- ~~

tN+n+l
_t
N~ lA~~~~ I p

÷ ( l+6k)~~ 
exp[_ ~~

tN÷n+l
_t
N+~~~

AtN+L IHN+L
AW

N+L I P•

• Ilenct f O T t  h , p ur ’  t y I or nola t. tond I conveni U L I C ( ,  We suppose tha t the OW 1 are

scalar-valued. I n  gor ie r i l , we need only work with one component at a time anyway .

Proceeding, let u~; next evaluate i~wM I
2

• 
~~~~~~~~~~~~~~~~~

- ~~~~~ ~~~~~~~~~~~ - ~~~~~~~~~~~~ 
— -—
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M N M
• (3.8) EIW M I 2 = E ~ ~TT /K? h.h. < 2 ~ ,“~T ~ ~~~ IEh .h.IIn . . 1 J 1 ] —  • 1 . . ] 1]i=m

< 2 ~ ~ v’~ 1R11 1 < 21< ~ i~t .  = 2K(tM+l
_t

m
)
~i m j> i  1=fll

where the last inequality follows by the first half of (A5). With perhaps a dif—

• ferent K , the same inequality holds for Ei~~I
2. By this estimate and the second

half of (A 5) , there is a constant such that for N > M
k

(3.9) ElHN+~
A
~~~~ I p ‘{w

~
D
k
} ~

Inequality (3.7) holds with probability 1 - P{Dk
} = 

~k 
+ 1. Let us modify

the (Ui ,Hi,i>
~
l
k
} on Dk 

in a way such that (3.7) holds for all n and (3.9) holds

without the indicator function and where Kk 
does not depend on k. Let {U~ ,H~

} denote

• the altered sequence . Then (3.7) and (3.9) together imply that SUpj>M EIU
~I < 

~~
.

Thus the sequence {U.,i<M k ; U~
,i>Mk

} is tight on ~
r Since k is arbitrary and

-* 1 as k -~ ~~~, this implies that the original {U.} sequence is tight. Q.C.D.

F 
4. Weak Convergence of {U

N(.)} and the Rate of Convergence

In this section , we show that {U
N(.)} converges weakly in D”[O ,c~) to the

stationary so lu t ion  to the Gauss—Markov diffusion

(4.1) dli = HUdt + AR112dB ,

where B() is a standard Wiener process and R”2 is a square root of the matrix

P in (A6) below. In p~irticular , this implies that (X~_ (~(S+l)
a/
~
2 converges in

distribution to a normal random variable with mean 0 and covariance

• - .  • - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-~~~~~~~~~~~~~~~~~ —~~~~~~~ .--~~~~~~~~~~ - 
1
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• 
f(exp I T t ) A R A ’( e xp  if’t)dt.

We will require the following additional assumptions .

(A6) {h.} is a stationary sequence, and E!h
1 1
6 

< 
~~ . Define R(i)  = Eh

1
h~÷1

.

Then R ~~•~R(i) is bounded by (As).

Let ~~~~~. = ~~~~~ i<j) and let E . denote the expectation conditional on

(A7) Define p 1
(i) ~~

p (i) = sup E”2IE .h. .h’~ .1 
i ~>o ~ ]+i ]+1+i

Then ~.p~~
2( i)  < ~~~.

The sup
1 
above and SUPk below are redundant if we assume that the {h1

}

process started at 
~ 

= —~~~, and choose the sample space appropriately.

(A 8) Define p2
( i )  

~~ p2
(i) = ~~~~~~~~~~~~~~~~ Then ~~p

1”2(i) < ~~ .

We now give some examples of (A7) and (AS). First suppose that {h
1

} is a

stationary and bounded 4-mixing process in the sense of [7, p. 166], wi th of course

Eh
1 

0. Let K denote an arbitrary constant. By [8, Lemma 1], IE~ hj+ k ! ~~~~~
and I E jhj÷kh~÷k÷i

_R(
~ )I < K+k. Thus p

1
( i)  < K~~~~., p2( i )  < K~~~~.. If ~~~~~~~~~~~~~~~ 

< ~~~
‘

then (A7) and (A8) hold. However, if the h. are Dounded and $-mixing, then

a slightly different proof of Theorem 2 can be given , requiring only < ~~~.

An example of (A6) to (A8). Let Q denote a matrix whose eigenvalues are

inside the unit circle , let {*} denote a sequence of independent and identically

~~~~~~~~~~~~ :~ :~~~~~~~~~~:~~ ~~IJi::::~~~L i~~~~ •• ~~~~~~~~~~~~~~~
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• distributed Gaussian random variables and define 
~~~~~
, > n > —

~~~, by 
~nf ~

~~~ + 
~
‘n 

Then {~~} is a stat ionary sequence . Let Eh(8,~~.) Eh .  = 0 and suçpose

that h (•) = h(8,.) satisfies a uniform Lipschitz condition , with constant K1
. Let

measure i~~~, i ~

Let us evalua te EiE k~
(
~k÷

.)I. Let {~~~.) denote a sequence with the same

distribution as {q.J, but independent of it. We have

~k+i 
= 0

~~ k ÷ 
~~~ ~~~k+i-Z-l

which has the same distribution as

• 0 
— ÷

Using the fact that the first term above has the same distribution as 
~ 

has for -

any in, together with the Lipschitz condition, yields

i E [~~( f irst  term - - E~(~ irst ten1l)l
~k ] I<  KlEl~~~Q~~~ I+K l IQ’

~k I .

from which (A8) follows. A simi lar (and omitted) calculation yields (A7).

Theorem 2. Under (Al) - (A8) , {U
N(.)} converges weakly to the stationary solu-

tion to (4.1).

Part 1. Define the “approximation to a Wiener process” W
N ( )  by

m(t +t)—l m(t +t)—l
wN(t ) = W  N 

= 
N~~~

N . 1 1
i N

with a similar definition for WN(.) (but using OW 1 in lieu of OW 1). We wil l

show that {WN()) is tight in DrtO ,00) and converges 1 a Wiener process witF

2ovariance matrix Rt. It easily follows from thi .~ that the s ine t e~ u i .~ nus

I )]d  for {~~
( . )} , since (n+2/n+l)~~

2 
= I + 0(1) impli es that { lw

N . 
~~~~~~~~ ) I }

• ii i: ; weakly to lie ?.re prores~i.

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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First we prove tightness of {W
N()}. For notational convenience only, we

assume that the h
1 
are scalar-va~ued in Ihis part of the proof. Otherwise, we

would work wi th one component at a time anyway, so there is no loss of generality.

Let £ > k > j > i .  We have

(~~.2) lEh ihjhkh~ I ~. 
lEh ih1

h
~
h
~ 

- Eh ihjEhkh~ I + IEh 1h1 I IEh kh~l

The first term on the right satisfies (use (A7))

- Lti
k
h
~

)I < ‘2Ih ihji
2E
~~

2lE jhkh~ 
- Eh

k
h
~~

2 
< Kp

1
(k-j).

By (A8 ), the f i rs t term on the right of (4.2) is bounded above by

IE h .h .h kEk hj  + I E i I . h . Eh k Ck h~ I < E
~~

2Ihih .h k I
2E
~~

2lEkh~ I
2

÷ lEh ih .lE 1”2h
~
E
~~

2IEkhL I
2

< Kp~ (2,—k).

Thus

(4.3) IEh jhj
hkh~ i ~ 

Kp 2
(k-1)p~~

2(~ -k) + IR (i-i)I lR(~-k)I.

Using these bounds , we get

m (t +t÷s)—l

EIW
N(t÷ s)_W U (t)1

4 
El 

N

1 m (t
N

+t)

1< ~ (At .At .At At )1”2IEh.h.h h
— 

i< j < k < t  1 k 9. 1 ] k Z

(summation between m (IN+t) and m (tN
+t+s)_l; at each use of K it may have a

different value )

- • —- — • -  - 

i___ _ •_
~
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< K 
~ 

(At
~
At

l
AtkAt 9.

)”2[p
~
’2(k_j)p

~
”2(t_k ) + I R ( j — i ) 1 1 R ( 9 . — k ) I 1 ,

i <j < k <9 .

(sum over 9. and use At
k ~ 

At9.
)

< K 
~ 

(At
l

At .)
~~
’2Atk

[p
~
’2(k_j) + IR (i—i)l]

i<j .zk

( sum over j and use At . > A t . )
1~~ ]

(4.3) < K 
~ 

At.A t
k ~~~ Ks~

i<k

-
• where the last inequality holds if t

N
+t+S and tN+t take values in the set {t1

}.

If (4.3) holds for all t, s, N , then [ 7], Theorems 15.5 and 12.3 imply

that {WN(.)) is tigh t in D~
’[O ,o) and that all processes which are weak limits have

continuous paths w.p. 1. But , since At ÷ 0 and the paths are piecewise constant,

it is enough that (4.3) hold for t
N
+t+S and tN+t in the {t1

} set. Thus

is tigh t and all limit processes have continuous paths w.p. 1.

Part 2. Now , the h1 are treated as vectors rather than scalars. Let N

index a weakly convergent subsequence of {W
N(.)} and denote the (continuous w.p. 1)

H weak limit by W(•). Note that (4.3) implies that {1W
N(.)1 2} is uniformly inte—

grable. Let < t < t+s and q be arbitrary. Let g(.) denote a bounded continuous

• function of WN (s1), i < q, and let E~ denote expectation conditioned on

{h 1, j<.m(tN+t)_l}. Then

Eg(WN ( s~), i<q)[WN(t+s)_W N ( t )]

i=m (t
N
+t+s )-l

= Eg ( W N(s
1

) ,  i<q)E~ /
~ch~i m(tN

+t)

goes to zero as N -
~~ by (A8). This together wit), the uniform integrability and

weak convergence imply thai Eg(%~s.) , i<q)[W(t+s)-W(t)I = 0 for all q, bounded

continuous g and {s.} ~ t < t+s. Thus W(~~) is a 
(oritinuouS martinga te. To

• - -- ~~~~~~~~-- ~~~~ -
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• 15.

compute its quadratic variation , repeat the above argument with EW
N(t÷ s)_WN(t)]

{WN(t+s)_W N(t)]~ replacing {W
N(t+s)_WN(t)]. Using (A6), the weak convergence

and uniform in tegrabil i ty  y ields

• Eg(W~
4(s.), i<q)[W

N (t+s)_W N(t)][WN(t+s)_W
N(l )It ~ Eg( W ( s . ) , i q) R s.

Then the a rb i t ra riness of g and s~ ~ - 
t < t+s yield that the quadratic var~ a~ f~~r

(at s) is Rs. Thu:~ W(~~) is a Wiener process with covariance Rs, as asserted.

This result does not depend on the chosen convergent subsequence.

m (t Ntt + s)_ l
Part 3. Define the function Cn (~~,~ ÷ S) C . Define a functionm(t N+t )

H (~ ) with values = 1
~N+n in (t N+ fl

_t
N~

tn+N+l
_ t

N
)
~

Then for  t E (t N ÷j
_ t

N , i>O}, and modulo a factor for each term which goes

• to zero uniformly in t w . p .  1 as N -
~ ~~~~, the sum (3.6) can be written in the integral

form (since the integrand is constant over At1 intervals)

UN ( t )  = C
N

(O ,t )U N ( O )  + cN (o ,t )A~~ (t )  - fC
N(s,t)H~A (~~(t)_~~(s))ds.

for t > 0 , between the {t .}, the integral in (4.11) is lust a linear interpolation

instead of a piecewise constant interpolation of the sum in (3.6), and we may work
N m(t +t)—l

with it instead. Define H (~~) by N
N(t) = 

~i m ~t )  H.At.. By (A3), {H N(.)} is

tight in Dr(O,~ ) and all limits are the constant process with value I-it at t. Note

that {C
N (O ,t)} is tight on D~ [O ,~ ) for an appropriate integer q, since it con-

verges to exp I-It uniformly on bounded intervals w.p. 1.

We now have essentially all the limits that are required. If H~ converged

to the constant IT w.p. 1 as N ± ~~~~, then the weak convergence of WN(.) and conver-

• gence of cN(s ,t would imply that (4.4) holds with all f unctions replaced by their

limits (and a weak ly convergen t subsequence of {LJN(O)} taken). Since H~ does not

usually converge in the above sense, a slightly indirect method must be used to

-— • - - ii ~~ _ 
. • •  • • - i .

~~~~~

- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ • -•—•.-•-~• —-‘•—•‘—•—-— —~~~ 
-
~— •-- —• • ~~

-•~—-—•~~—~ • •• ~~~~~~~~~~~~ -• ••~••

_ _• ___ à~ •~~~~~~~~ _ _ _ _ . — —  - • -- -.— •



• _
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---- —

~~~~
---- -- --

~~~
- ---- - ________

16.

allow us to make the replacements suggested above. It is convenient to have all

the random functions defined on the same space and to work with w.p. 1 rather than

wi th weak convergence • To do this we apply the imbedding technique of Skorokhod

( 9],  Theorem 3.1.1. The family (U M (O) , HN ( .) ,WN ( .) , CN (O ,t )} {~ N ( .) }  is tight in

the appropriate space Rr x D
2

~~~
’
~ [O ,oo) ~p and all limit functions are continuous

w.p. 1. Extract a convergent subsequence, index it by N, and denote the limit by

(U(o),iT(~ ) , W( ) ,c(o,.) •(~ ). By the Skorokhod imbedding method (9], Theorem

3.1.1, there exists a probability space (
~~,P,B) wi th random processes

{~N(.)} and (i~(o),ii(.),W(~ ) , C(o,.)) ~
( . )  defined

• on it, where ~~~~) (resp., 3( . ) )  has the same distribution as ,~,N(.) (resp.,

•(~)), all the processes in • ( )  have continuous paths and •N(.) + ~ ( . )  w.p. 1 in

the topology of ~~~. Since the limit processes are continuous , this means uniform

convergence on bounded intervals. From Fi”( .
~~~~, we can recover the random variables

H . . .  . - N .  .• HN+i, 1 > 0 , from which it was constructed, since H ( )  is also piecewise constant

w.p. 1. Also {HN÷i , 1>0) has the same distribution as has (H N+i ,i.10}.

We work with the imbedded processes, but drop the tilde affix. Now,

return to (4 . 4) and , via the imbedding, suppose that al l weak convergences are

• w.p.  1 in the above—cited topology . The first two terms of (4 .4)  converge to

(exp lit) u(o) and (exp lit) W ( t ) ,  resp. Note that c
N (s ,t = CN (O ,t)[CN (O ,s) ]_ l

also converges w.p.  1 uniform ly on bounded sets to exp H(t-s). We next write the

integral in (4.4) in a more convenient way.

Let A > 0, and let M = max(i: iMt). We have

M—l iA+A

~~ ~~~~~~~~~~~~~~~~~~~~ 
— C(i~~,t)H~ A (W (t )— W ( iA ) ]  }ds

A (WN(t)_W N(s)] - c(M ,t)H~A (W(t)—W(MA)]}ds

• —
~~~~~~~~~~~ - •~~~~~~ - - •
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M~l 
sup I l c N(s ,t)_c (iA ,t)l + lw N ( s)_ wuA ) l  +

i 0 iMs<it.+A
iA+A

[lW N(t)_~ (s)I + IC (s ,t)l] J IHN Ids IA I plus a similar expression
for the end term .

IA

By the w.p. 1 uniform convergences (on boun ded intervals ) and continuity

• of the limit functions and the estimate (A3b), the limit of the above expression

goes to zero uniformly on bounded t sets , w.p. 1, as N -‘ ~ and then A + 0.

Thus, we need only examine the limits of

M-l iA+A t

~~~ 

J C(iA ,t)H~A[W(t)-W(iA)]ds + 
J

C(MA ,t )H NA ( W ( t )_ W ( M A ) ] d s .

But, by (A3a), (4.5) converges to the same expression with li replacing H , uni-

formly on bounded intervals, w.p. 1 as N + °°. By the above calculations we can

wri te the limit of the third term in (4 .4 )  as

t

(4.6) — I C(s,t)TiA (W(t)—W(s)IdS
for the imbedded , hence the original processes. Thus i?(t) (the imbedded process )

comverges to

(4 . 7) 13(t) C(0 ,t )U ( 0 )  s C(o ,t)~ W(t )  + (4.6)

uniformly on finite intervals, w.p. 1. Consequently the original 13
N() converges

weakly to the process (4.7). But (4.7) is the unique solution to (4.1) with

initial condition 13(0) .  The form is independent of the selected convergent sub-

sequences . Also , via an integration by parts, 
______
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18 .

(4.8) u ( t )  = C(o ,t)  13(0) + J C(s ,t) A dW .

We need only show that 13(0) is the “stationary” initial condition. This

can be easily shown in the following manner. The set of all possible 13(0) is

tight because {iJn} is. Also the weak limits of {13N(.)} are also weak limits of

the restrictions to T,~o) of the weak limits of (the functions are left—shifted
• m(t

N
_T) m(t

~
_T)

by T)  (ii (~ )} on D” (O ,°’), since U (T) But the latter limits

are of the form (4 .8)  also. The restriction to (T,~°) involves simply replacing

t by T+t in (14.8). From this, the tightness of possible 13(0) ,  the arbitrariness

of T and the fact that c(o ,t ) = exp lit + 0 as t + ~, we get that 13(0) must be

the “stationary” initial condition. Q.E .D.

_____ •_ • • ;.• ~~~~~~~~~~
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